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1.  INTRODUCTION: Ovarian cancer is a disease of uncontrolled cell division. Cell division 
normally creates two genetically identical daughter cells through severing of a cytoplasmic 
bridge that interconnects them. The midbody is an organelle within the bridge that is involved in 
severing. Previously, midbodies (MBs) were thought to be lost from cells after division, but we 
showed that, in cancer cells, they can be retained, accumulated and increased with tumor grade. 
In this proposal, we identified putative MB-containing ovarian cancer cells and targeted them for 
chemotherapeutic elimination of ovarian cancer-related phenotypes. We tested if MBs were 
present in putative ovarian cancer stem cells from multiple ovarian cancer cell lines, if MB-
containing ovarian cancer cells had increased tumorigenic potential and if MB degradation 
decreased tumor potential (Task 3). 

 2. KEYWORDS: MB, midbody; CSCs, cancer stem cells, NBR1, neighbor of BRCA1, 
NipSnip2, binding partner of BRCA1, BRCA1, breast cancer 1 gene.  MT, microtubules. 

 
3. OVERALL PROJECT SUMMARY: Summarize the progress during appropriate reporting 
period (single annual or comprehensive final).  This section of the report shall be in direct 
alignment with respect to each task outlined in the approved SOW in a summary of Current 
Objectives, and a summary of Results, Progress and Accomplishments with Discussion.   Key 
methodology used during the reporting period, including a description of any changes to 
originally proposed methods, shall be summarized.  Data supporting research conclusions, in 
the form of figures and/or tables, shall be embedded in the text, appended, or referenced to 
appended manuscripts.  Actual or anticipated problems or delays and actions or plans to resolve 
them shall be included. Additionally, any changes in 
approach and reasons for these changes shall be reported.   
Any change that is substantially different from the 
original approved SOW (e.g., new or modified tasks, 
objectives, experiments, etc.)  requires review by the 
Grants Officer’s Representative and final approval by 
USAMRAA Grants Officer through an award 
modification prior to initiating any changes 
 
Task 1. Test whether MBs are present in ovarian tumors 
(Fig. 1) and in ovarian CSCs in vitro.  
We isolated ovarian CSCs from cell lines and tested them 
for enrichment of MBs. As in our previous work with 
other cancer cells (Kuo et al, 2011), we successfully isolated 
the side population of SKOV3 cells (putative cancer stem 
cells) based on their ability to use the ABC transporter to 
pump out the DNA dye Hoechst 33342 (the so called side population). We also isolated putative 
CSCs by flow cytometry of the fluorescent-tagged cell surface CSC markers (CD133+, CD44+, 
CD117+) (Dyall et al., 2010; Ponnusamy et al., 2008). 
 
In both strategies, these putative CSCs were fixed, spun onto coverslips and stained for MBs 
using two different and effective MB markers, MKLP1 and MgcRacGAP. There was near 
complete (98.8+/- 0.3%) concordance in MB staining using these two different markers. In both 
CSC preparations MBs were found to be significantly higher in the CSC fraction (77+/- 11.1% 

 
Fig. 1. MBs (brown) in 
normal (left) and ovarian 
cancer tissue (right). 



and 92+/-4.3%) versus the nonCSC populations (7.1% and 6.4%). (n=4 experiments/isolation 
procedure).  

 
During these analyses, we unexpectedly discovered that a large number of canonical ovarian 
oncogenes and tumor suppressors localized to MBs in epithelial ovarian cancer cells. These 
included HER-2/neu, c-myc and K-ras, p53, BRCA1, BRCA2 and others. This result provided a 
potential molecular mechanism for the tumorigenic property of MBs and could serve as a novel 
therapeutic method for treating ovarian cancer in future studies. To our knowledge, this is the 
first report on ovarian cancer proteins on midbodies.  We hope to garner additional funding to 
pursue this new discovery and determine how MB binding of these proteins influences ovarian 
tumor cell.  
 
Task 2. Test the tumorigenic potential of MBs.  
We next tested MB-positive cells that were isolated based on MB fluorescence. We used the 
robust MB marker, MKLP-1 to construct an MKLP-1-GFP fusion protein in both SKOV3 and 
OVCAR-3 cells. We used flow cytometry to isolate MB-positive cells from these populations. 
To assay for tumor potential we grew cells in soft agar (anchorage-independent growth). We 
observed a dramatic increase in soft agar growth in MB-positive SKOV cells, colony #: 107+/-I 
6, versus MB-negative SKOV cells, 25.2+/-0.2, p<0.001 and a lower but significant increase in 
MB-positive OVCA cells (OVCAR-3), colony #: 79+/-3.1 vs. 11+/- 1.1. We did not address 
why there were differences in the degree of soft agar growth between these cells lines, but 
rather, we focused on the trend, namely that MB-positive cells vs. MB-negative cells have 
greater tumor-like potential.   
 
We used an independent method to test for the ability of MBs 
to enhance tumor potential. In this assay, we prevented 
receptor-mediated degradation of MBs (figure right) by 
depleting the MB-autophagy-receptor, NBR1. shRNA 
depletion of NBR1 as in our previous studies (Kuo et al, 2011) 
blocked autophagic degradation of MBs and increased the 
percent of MB+ cells by a level similar to those in Kuo et al., 
2011 and this was accompanied by an increase in soft agar 
growth by percentages similar to those observed for cells 
isolated by MKLP-GPF, above (4.13-fold greater than 
controls). During the course of this work, we discovered 
another autophagy protein, NipSnip2. It had an enhanced 
effect on MB degradation when depleted compared to NBR1 
(8.19-fold increase in colony number over control (scrambled shRNA).  
 
Task 3. Test if specific targeting of MBs for autophagic degradation is a therapeutic strategy 
for ovarian cancer.  
We showed that expression of NBR1-GFP or NipSnip2-GFP increased autophagy-mediated 
degradation of MBs over GFP control cells (~ 4-fold fewer MBs than GFP control, Fig. 3) in 
two different ovarian cancer cells (SKOV3, OVCAR-3) presumably through more efficient 
binding of these proteins to MBs facilitating their uptake into the MB-selective autophagy 
pathway. GFP and the GFP-tagged proteins were all expressed at the same levels then analyzed 

 

 
Fig. 2. MB in autophagosome 
OVCAR3 cell, blue, nucleus, 
red, MB, green, autophagic 

vacuole  



for soft agar colony number. Soft agar colony number was 
decreased in GFP-NBR1 expressing cells vs. GFP alone 
expressing cells with fold differences very similar to that 
observed in other cancers in our studies 74+/-2.1 vs. 11+/-0.7; 
Kuo et al., 2011). This result has important implications for 
ovarian tumor therapy.  
 
From all of these studies we conclude that MBs influence the 
tumorigenic-like properties in ovarian cancer cells. More 
specifically, increasing MBs in ovarian cancer cells increases 
tumor-like activity whereas decreasing MBs decreases tumor-like 
properties of cells. Future studies will be designed to test if the 
MB-bound oncogenes and tumor suppressors (above) play a role 
in this process. We completed nearly all the proposed work on in 
vitro cell biology studies. This work took more time than 
anticipated, so we were unable to make progress on the mouse 
orthotopic tumor experiments. We hope to address this task in the 
near future. 

 
4. KEY RESEARCH ACCOMPLISHMENTS:  Bulleted list of 
key research accomplishments emanating from this research.  
Project milestones, such as simply completing proposed 
experiments, are not acceptable as key research accomplishments.  
Key research accomplishments are those that have contributed to 
the major goals and objectives and that have potential impact on the research field.  For each 
section, 4 through 9, if there is no reportable outcome, state “Nothing to report.” 
 
*Midbodies are inherited by one daughter cell and accumulate in ovarian cancer cells. 
 
*Midbodies are present in ovarian cancer stem cells and their presence is associated with 
increased in vitro tumor potential over MB-negative ovarian cancer cells. 
 
*Midbodies serve as scaffolds for anchoring cancer oncogenes, tumor suppressors and cancer 
stem cell proteins.  
 
*MB-bound cancer oncogenes and tumor suppressors could serve as novel targets for ovarian 
cancer therapies. 

 
*NBR1 expression effectively eliminates ovarian cancer cells. Expression of the NBR1 
interacting protein, NipSnip2, also decreases ovarian cancer cell growth in soft agar. These 
approaches could become ovarian cancer therapies. 
 
*MB-positive ovarian cancer cells contain stem cell antigens. 
 
5. CONCLUSION:  Summarize the importance and/or implications with respect to medical 
and /or military significance of the completed research including distinctive contributions, 

Fig. 3. MBs in OVCAR3 
cells expressing GFP 

(upper) or NBR1-GFP    
(lower).  



innovations, or changes in practice or behavior that has come about as a result of the project.  
A brief description of future plans to accomplish the goals and objectives shall also be 
included.  
 
The results reported in this funding period show promise toward ovarian cancer therapies. These 
approaches could ameliorate ovarian tumors in military personnel and could be used by medical 
personnel. Several lines of investigation suggest this could be accomplished: MBs enhance 
ovarian cancer whereas decreasing MBs kills ovarian cancer cells. Overexpression of autophagy 
proteins (NBR1, NipSnip2) decreases MBs and kills ovarian cancer cells. This is tumor cell 
specific because normal cells do not accumulate MBs. MB-positive ovarian cancer cells appear 
to be ovarian cancer stem cells. This suggests that MB targeting for ovarian cancer therapy will 
target the cell that is the most insidious of all ovarian cancer cells, the ovarian cancer stem cell. 
In turn, MB+ ovarian cancer stem cells are likely to be the cells that are drug resistant, recurrent 
and form metastatic lesions, all of which have been the most difficult to treat. The finding that 
MBs anchor ovarian cancer oncogenes, tumor suppressors and cancer stem cell proteins 
suggests that they may serve as scaffolds for ovarian tumor pathways. We expect the work will 
ultimately have a sustained and significant impact on ovarian cancer for a number of additional 
reasons: We provide a new understanding of ovarian cancer etiology, namely the finding that an 
organelle never before associated with cancer may in fact be a key player in ovarian tumor 
development and progression. We also believe that we have identified a new and effective 
ovarian cancer stem cell identification strategy based on a novel and atypical biomarker, the 
MB. We believe that our laboratory is the only one in the world working in this area of cancer 
biology. We will follow up this work by testing for the significance of cancer-associated 
proteins that are bound to MBs. We will attempt to mislocalize these proteins from MBs and 
ask if there are changes in tumor potential. This is a novel and interesting result that makes 
sense in terms of the mechanism by which MBs confer tumor like properties to cancer cells.  
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Abstract

The midbody (MB) is a singular organelle formed between daughter cells during cytokinesis and 

required for their final separation. MBs persist in cells long after division as midbody derivatives 

(MBds), but their fate is unclear. Here we show that MBds are inherited asymmetrically by the 

daughter cell with the older centrosome. They selectively accumulate in stem cells, induced 

pluripotent stem cells (iPSCs) and potential cancer ‘stem cells’ (CSCs) in vivo and in vitro. MBd 

loss accompanies stem cell differentiation, and involves autophagic degradation mediated by 

binding of the autophagic receptor, NBR1, to the MB protein Cep55. Differentiating cells and 

10Correspondence should be addressed to S.J.D. (stephen.doxsey@umassmed.edu).
9These authors contributed equally to this work
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normal dividing cells do not accumulate MBds and possess high autophagic activity. Stem cells 

and cancer cells accumulate MBds by evading autophagosome encapsulation and exhibit low 

autophagic activity. MBd enrichment enhances reprogramming to iPSCs and increases in vitro 
tumorigenicity of cancer cells. These results suggest unexpected roles for MBds in stem cells and 

CSCs.

INTRODUCTION

Cell division culminates in the separation of two genetically identical daughter cells1. 

During division, cell fate determinants segregate asymmetrically to stem cell progeny2. The 

two spindle poles organized by differentially-aged centrosomes contribute to this 

asymmetry2,3 in that the older centrosome is inherited by the daughter cell that retains the 

stem cell fate4-6.

Abscission completes cell division by severing the intercellular bridge between the two 

future daughter cells1,7. Within the intercellular bridge lies the midbody (MB), a large 

proteinaceous organelle7-10 that was previously thought to detach from cells and disintegrate 

extracellularly as a remnant7,8. Recent studies show that post-abscission MBs or MB 

derivatives (MBds) can be retained by daughter cells, suggesting alternative fates for these 

organelles9,11,12.

The fate and function of MBds is unclear. In neural progenitors, MBds possess the putative 

stem cell marker CD133/prominin-1 and are proposed to participate in intercellular signaling 

during neural development13,14. MBds can be degraded by autophagy (see below)12, but the 

relationship between MBd loss or retention and the physiological state of cells is unknown.

During autophagy (macroautophagy), double membrane-bound autophagosomes assemble, 

engulf cytoplasmic material, and fuse with lysosomes for degradation15-18. Autophagy is 

required for cellular homeostasis, eliminating defective ubiquitin-tagged proteins and 

organelles16-19, clearing cell fate determinants and cell remodeling20-22. Defects in 

autophagy contribute to many disorders, including neurodegeneration23, hepatomegaly24 

and aging15,18.

Here we show that MBds accumulate in stem cells and are lost upon differentiation. They 

are selectively degraded by linking the NBR1 autophagic receptor to the Cep55 MB protein. 

MBds accumulate by evasion of autophagosome encapsulation, asymmetric inheritance, and 

maintenance of low autophagic activity. Reprogramming efficiency and in vitro 
tumorigenicity are increased following experimental elevation of MBd levels suggesting 

non-mitotic roles for these organelles in stem and cancer cells.

RESULTS

Post-mitotic midbodies accumulate within cells

Multiple MBds were observed in subpopulations of cells by immunofluorescence (IF), but 

their precise location was unclear (up to 20; Fig. 1a, b). Three-dimensional reconstruction of 

immunofluorescent images revealed multiple MBds inside polarized and nonpolarized cells 
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(Fig. 1c, d). Immuno-electron microscopy confirmed this localization and revealed 

ultrastructural features characteristic of MBds8,14 (Fig. 1e). About 70% of cell-associated 

MBds were trypsin-resistant, suggesting that they were intracellular (Fig. 1f). This 

intracellular localization of MBds suggested that they might accumulate in cells through 

successive divisions (below).

MBds were also released from cells. In 2-day co-cultures of HeLa cells stably expressing 

either monomeric RFP (cytoplasmic marker) or MKLP1-GFP (MB marker), about 7% of 

MKLP1-GFP+ MBds associated with RFP+ cells (Fig. 1g). Such free MBds were also 

generated by other cell types (e.g. human adult fibroblasts, HeLa; 1-10%). These 

observations resolve the conflict of previous studies suggesting that MBds are either retained 

and degraded9,11,12 or released as remnants after abscission8. We show that MBds 

accumulate in some cells (Fig. 1a-d) but not others, and it is this cell type-specific difference 

in MBd-accumulation that is the focus of this study.

MBds are inherited by the cell with the older centrosome

Multiple MBds often clustered around the centrosome or spindle pole (ref. 9 and data not 

shown), reminiscent of MBd-sized aggresomes, which segregate to one daughter cell under 

control of centrosomes25,26. Moreover, centrosome age-dependent differences in signaling 

were observed late in cytokinesis27. These centrosome age-related differences led us to 

examine the relationship between centrosomes and MBd inheritance.

In G1, the centrosome contains one mother centriole (MC) and one daughter centriole 

(DC)3. After centriole duplication, three generations of centrioles are present: an older 

mother, a younger mother and two new daughters3,27. The centrosome with the older MC is 

termed the older centrosome4,5. GFP-tagged centrin1 (CETN1-GFP)28 expressed in mitotic 

HeLa cells was brightest at one of the four centrioles (92.2% of cells, n=116; Fig. 2a) and 

turned over very slowly (FRAP t1/2 ~4 hours and ref. 5). The brightest centriole remained so 

from metaphase to late cytokinesis (91.3% of cells, n=46; supplementary information, Fig. 

S1a), suggesting that it was the older MC. This was confirmed by staining with the older 

centrosome marker, hCenexin127 (~90% of HeLa and MCF-7 cells, n=143 and n=347, 

respectively; Fig. 2b). Several other centriole antigens also showed intrinsic age-related 

differences in labeling (supplementary information, Fig. S1b).

Using CETN1-GFP to identify the older MC; bright-field imaging to follow MB dynamics 

in living cells; and immunofluorescence to confirm MBd inheritance, we determined that 

MBds were preferentially inherited by the cell with the older centrosome. This was observed 

in pluripotent human embryonic stem cells (hESCs; 83.3% of H9, n=18; Fig. 2d), 

immortalized somatic cells (91.3% of hRPE-1, n=23) and cancer cells (U2OS: 84.6%, n=13; 

HeLa: 75.0%, n=24; Fig. 2c). We conclude that most inherited MBds are asymmetrically 

transferred to the daughter cell with the older centrosome in several cell types.

MBds accumulate in stem cells in vivo

Other studies have shown that the older centrosome is asymmetrically inherited by the stem 

cell during asymmetric divisions in the Drosophila male germline4 and the mouse 

neocortex5. The association of the older centrosome with both MBds and stem cell divisions 
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led us to ask whether MBds were found in stem cell niches. To address this, we determined 

the localization of MBds in human and mouse tissues. In seminiferous tubules of testes, 

MBds were confined to the basal compartment, the site of germline stem cells and their 

mitotic progeny (both capable of self-renewal29,30) (Fig. 3a, up to 8 puncta/cell, 5-μm 

section). Electron microscopy also revealed multiple cytoplasmic structures with features 

characteristic of MBds within these cells (Fig. 3b, c).

In the ventricular zone (VZ, Sox2+31) of embryonic mouse brains, CD133-labeled MBds 

were associated with neural progenitors13,14 (Fig. 3d and Supplementary information, Fig. 

S2). During asymmetric divisions, intracellular MBds were usually found in ventricle-facing 

daughter cells (progenitors; 75%, n=8) and not in daughters with presumed committed 

fates5. MBds in the human hair follicle were also confined to a subpopulation of cells in the 

stem cell niche, the bulge32, suggesting distinct properties of this subpopulation (Fig. 3e, f). 

MBds were also enriched in β1–integrin+33 mouse skeletal muscle progenitors (SMPs; 4-

fold) over non-SMP cells. These observations suggested that MBds were selectively retained 

and accumulated during successive stem cell divisions in vivo.

MBds accumulate in stem cells in vitro

To rigorously test the idea that MBds are selectively inherited by stem cells, we examined 

MBd fate during stem cell differentiation and somatic cell reprogramming. MBd 

‘accumulation’ was assessed by counting cells with >1 MBd, as all cells can transiently 

acquire one MBd after abscission (below). MBd-accumulation decreased ~8-fold upon 

differentiation of hESCs (H1-OGN) to fibroblast-like cells (dH1f; Fig. 3g, h). 

Differentiation was judged by loss of embryonic stem cell markers (Oct4, Sox2, Klf4, 

Nanog) and gain of the CD13 differentiation marker34,35. In contrast, MBd-accumulation 

increased ~7-fold after reprogramming dH1f cells to iPSCs34,36 (dH1f-iPS; Fig. 3h, i). We 

conclude that MBd-accumulation in vitro reflects that observed in vivo, and can be 

manipulated by altering the potency status of cells.

MBd-accumulation is enhanced in tumor-derived cells

We next examined differences in MBd-accumulation among cell lines derived from stem 

cells, normal dividing cells and cancer cells (Fig. 4a). MBd-accumulation was low in 

primary and telomerase-immortalized normal cells and significantly higher in hESCs and 

iPSCs (~7-fold on average; Fig. 4a). Most cancer cells exhibited even higher levels of MBd-

accumulation. For example, MBd-accumulation in tumorigenic MCF-10AT and 

MCF-10CA1a cells was much higher than in the normal MCF-10A parental line. The 

common ability of stem cells and cancer cells to accumulate MBds, express stem cell 

markers37 and possess stem cell properties38,39 suggests a relationship between MBd-

accumulation, tumorigenicity and cancer ‘initiating’ or ‘stem’ cells defined by the CSC 

theory40.

MBd-accumulation does not correlate with cell proliferation rate

A simple explanation for cell type-specific differences in MBd-accumulation is variability in 

proliferation rates. Slower division rates could allow more time for MBd degradation, as 

recently proposed12. However, we observed no correlation between population doubling-
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time and MBd-accumulation (Fig. 4a). It was still possible that MBd-accumulating cells 

cycled faster than the bulk population. However, a cohort of cells pulse-labeled with EdU41 

showed a proportional decrease in EdU intensity, reflecting dilution of dye after successive 

divisions (Fig. 4b) and indicating that MBd-accumulating and non-accumulating 

subpopulations had similar cycling rates (Fig. 4c, d).

MBd-accumulating cells evade membrane encapsulation of MBds

We next asked if MBds occupied different sites within MBd-rich and MBd-poor cells. To 

test this, we used the Fluorescence Protease Protection (FPP) assay42 to monitor degradation 

of MBds following plasma membrane permeabilization and protease addition (Fig. 5a). 

Under these conditions, MKLP1-GFP+ MBds were degraded in MBd-rich HeLa cells but not 

in MBd-poor hRPE-1 cells indicating that MBd-poor cells sequestered MBds in membrane-

bound compartments whereas MBd-rich cells accumulated them in the cytoplasm (Fig. 5b). 

Importantly, the integrity of intracellular organelles was maintained during the course of 

these experiments (supplementary information, Fig. S3).

Stem cells and cancer cells evade lysosomal degradation of MBds

The protease resistance of MBds and low MBd-accumulation in MBd-poor hRPE-1 cells 

(Fig. 4a and 5b) suggested that MBds were delivered to a membrane-bound compartment for 

degradation, such as the lysosome. Indeed, MBds were often found within LAMP243-labeled 

lysosomes in MBd-poor cells (Fig. 5c). To test this further, we examined the fate of newly-

formed MBds in synchronous populations of MBd-poor cells (Fig. 5d). Three hours after 

release from mitosis, the percent of MBd+ cells (MBd levels) peaked at ~40% (50% being 

the maximum since half the cells were ‘born’ without a MBd). This was followed by a peak 

in MBd localization to lysosomes (~42% at 7 hours; Fig. 5d) and then a decrease of MBds to 

baseline levels (16-19 hours; Fig. 5d). These data and the FPP data suggested that MBds in 

hRPE-1 cells entered the cytoplasm, moved into lysosomes and were degraded before the 

next cell cycle (Fig. 5b, d).

If lysosomes are involved in MBd degradation, lysosomal inhibition should increase MBd 

levels. Indeed, when lysosomal activity was inhibited in MBd-poor hRPE-1 cells with either 

chloroquine or E64d/PepA protease inhibitors44 MBd levels (Fig. 5e) and the percent of 

MBds found within lysosomes (Fig. 5c) were elevated. In contrast, MBd levels and the 

percent of MBds in lysosomes in MBd-rich cells (hESC, MCF-7; Fig. 5c, e) were largely 

unaffected by lysosomal inhibition (see supplementary information, Fig. S4a). The modest 

increase in MBd+ HeLa cells (Fig. 5e) was consistent with their modest MBd-accumulating 

ability (Fig. 4a). We conclude that lysosomal degradation prevents MBd-accumulation in 

MBd-poor cells, but does not play a major role in MBd-rich cells (e.g. stem cells, CSCs) thus 

allowing MBds to accumulate.

Autophagic degradation controls intracellular MBd levels

To determine how MBds were directed to lysosomes, we explored pathways leading to 

lysosomal degradation. Reported autophagy levels in MCF-7 and DLD-1 cells45,46 

suggested a relationship between autophagy and MBd fate. Low autophagy levels in MCF-7 

cells resulting from a deficiency in the autophagy gene, BECN1 (also known as Atg6)45, are 
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consistent with high MBd-accumulation (~26-fold over normal cells; Fig. 4a). High 

autophagy levels in DLD-1 cells46 are consistent with low MBd-accumulation (only ~1.8-

fold over normal cells; Fig. 4a). In agreement with this trend was the presence of MBds in 

autophagosomes of MBd-poor cells (Fig. 6a).

Experimental reduction of autophagy activity using MEFs from Atg5-deleted mice19 or by 

siRNA-mediated depletion of Atg7, increased MBd levels (Fig. 6b). Induction of autophagy 

by rapamycin and lithilum chloride treatment47,48 in HeLa cells or by exogenous BECN1 

expression in MCF-7 cells, decreased MBd levels (Fig. 6c). These results demonstrated the 

role of autophagy in regulating MBd levels in different cell types, and suggested an inverse 

relationship between autophagic activity and MBd-accumulation. This inverse relationship 

was revealed in 12 cell lines by LC3-II44,49 or p6244,50,51-based measurements of 

autophagic activity (Fig. 6d, e and supplementary information Fig. S4b). We conclude that 

MBd levels are, in part, modulated by cell type/lineage-specific autophagy (Fig. 3g-i, 4a, 6d 

and 6e).

NBR1 is an autophagic receptor for MBd-specific degradation

To test whether MBd degradation involves non-specific or receptor-mediated autophagy 

pathways15, we investigated the mammalian autophagic receptors, p6250-52 and NBR153,54. 

p62 is implicated in MBd clearance12, whereas NBR1 is untested. NBR1 and p62 localized 

to mitotic MBs and MBds (Fig. 7a, top, data not shown, and ref. 12), suggesting that MBd 

degradation involves receptor-mediated autophagy. NBR1-silencing in HeLa cells increased 

MBd levels to Atg7-silencing levels (Fig. 6b and 7b), suggesting that NBR1 is likely a major 

autophagic receptor for MBd degradation. In contrast, p62-deletion51 or siRNA-mediated 

p62 depletion had no detectable effect on MBd levels (Fig. 7b, c) or NBR1 recruitment to 

MBds (Fig. 7a, bottom).

To date, no MBd target(s) for autophagic degradation have been identified. Candidate-based 

screening revealed that endogenous NBR1 co-immunoprecipitated with the MB protein 

Cep55 in hRPE-1 cells (Fig. 7d). Cep55 over-expression increased MBd levels (Fig. 7e) and 

the level of NBR1-negative MBds (Fig. 7f), presumably through NBR1 sequestration in the 

cytoplasm (Fig. 7g). This suggested a role of Cep55 in NBR1-mediated MBd degradation. 

We propose that the Cep55/NBR1 interaction couples MBds to the autophagic machinery to 

control MBd fate.

Cells enriched in MBds exhibit increased reprogramming efficiency

We next examined the functional consequences of manipulating MBd levels. We first tested 

the role of MBds during reprogramming34,35,55 in cells stably expressing NBR1-specific 

shRNAs (shNBR1) to increase MBd levels over controls (shNT). MBd levels increased ~1.8-

fold in dH1f cells, ~1.5-fold in IMR9055 embryonic fibroblasts, and ~1.9-fold in hFib234 

adult fibroblasts. Under these conditions, iPSC colony formation increased significantly in 

all three cell types depleted of NBR1: dH1f cells (up to 8.7-fold, avg. 3.1±0.5-fold), IMR90 

cells (up to 4.2-fold, avg. 3.4±0.8-fold; Fig. 8a, b and supplementary information Table. S1) 

and adult hFib2 cells (up to 2.5-fold, avg. 1.7±0.5-fold). Similar results were obtained with 

different batches of viruses, different combinations of reprogramming factors, and different 
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viral delivery systems (see Methods). Importantly, increased reprogramming following 

NBR1-depletion occurred without significant changes in global autophagic activity (dH1f; 

Fig. 8c) or cell proliferation rate (shNBR1: 27.3±2.5hrs; shNT: 26.8±4.5hrs; n=6), 

suggesting that NBR1 is selective for MBd degradation.

Cancer cells enriched in MBds exhibit increased in vitro tumorigenicity

Because MBds selectively accumulate in stem cell niches, hESCs, and iPSCs, we reasoned 

that they may also accumulate in CSCs. On the basis of Hoechst 33343 extrusion, the side 

population (SP) of MCF-7 cells56 was isolated. These putative CSCs showed a 7-fold 

increase in MBd+ cells over the non-SP population (MP; Fig. 8d).

To directly address the role of MBds in cancer cells, MKLP1-GFP-expressing HeLa 

populations with high or low percentages of MBd+ cells were isolated by FACS, and tested 

for anchorage-independent growth. Increased colony formation was observed in the “MBd 

high” versus the “MBd low” population, and colony formation increased with increasing 

MBd levels (up to 4-fold; Fig. 8e). An increase in colony formation was also observed in 

MBd-enriched HeLa cells (Fig. 8f, left) and mouse hepatocarcinoma cells (134-4; Fig. 8f, 

right) following NBR1-silencing. Results of all three strategies suggest that MBds in cancer 

cell subpopulations may contribute to their tumorigenic potential.

DISCUSSION

We have identified new roles for MBds outside their canonical function in cytokinesis. This 

work provides the first evidence for MBd-accumulation in stem cells, hESCs and iPSCs in 
vivo and in vitro, and for dramatic MBd reduction in differentiating progeny of stem cells. 

MBds appear to function in maintaining or enhancing the pluripotency of stem cells and the 

tumorigenicity of cancer cells.

Our findings suggest that MBd loss that accompanies stem cell differentiation is mediated by 

autophagic degradation, resulting in selective elimination of MBds in differentiated cells but 

retention in germ or stem cells. This process is intriguingly similar to clearance of P granule 

components in committed somatic cells of C. elegans, which is also mediated by 

autophagy57. Moreover, P granules contain molecules required for cell fate specification58, 

and MBds contain stem cell markers13,14 and enhance cell fate conversion (present study). It 

is thus tempting to propose that MBds may serve as scaffolds for organizing cell fate 

determinants. Equally intriguing is the observation that essentially all cancer cells examined 

contain MBd-accumulating subpopulations, making this a common intrinsic property of both 

stem cells and cancer cells. The observation that MBd-enriched cancer subpopulations 

exhibit enhanced in vitro tumorigenicity is consistent with the CSC model for potentiation of 

tumorigenicity37-40.

Our data identify two primary mechanisms for MBd-accumulation. The first is asymmetric 

MBd inheritance by the daughter cell with the older centrosome (Fig. 8g, top). In fly testes 

and mouse neocortex, the old centrosome segregates to the stem cell during asymmetric 

divisions and is accompanied by increased microtubule-anchoring ability4-6. MBd 

inheritance could be facilitated through increased anchoring of microtubules to the older 
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centrosome, and increased microtubule binding to the MBd in the daughter cell with the 

older centrosome. This would be consistent with the observed MBd-accumulation in stem 

cells but not in their differentiated progeny. Despite the slower division rate of stem cells in 
vivo59, MBd-accumulation could still occur via this mechanism. However, our results also 

indicate that such asymmetry occurs in different cell types, suggesting that it may only be 

physiologically relevant in stem cells and CSCs.

Evasion of autophagic degradation is a second mechanism for MBd-accumulation (Fig. 8g, 

bottom). This is exemplified by the inverse relationship between MBd levels and autophagic 

activity, and by changes in MBd levels with manipulation of autophagy levels. MBd-

accumulation can also be mediated by uncoupling receptor-mediated entry into the 

autophagy pathway, since depletion of the NBR1 autophagic receptor or over-expression of 

the corresponding ligand, Cep55, increases MBd levels. In contrast, another known 

autophagic receptor, p62, does not appear to be involved in MBd clearance (Fig. 7b, c). 

NBR1 and p62 can form a complex53,60; however, evidence suggests that they may act 

independently as autophagic receptors53. Thus, p62/NBR1 complex formation may not be a 

prerequisite for autophagic degradation. Since NBR1-silencing increases MBds to levels 

seen following inhibition of autophagy in HeLa cells (Fig. 6b and 7b), NBR1-mediated 

autophagic degradation likely represents a major pathway for selective MBd elimination. 

However, it is still possible that other autophagic receptors and MBd ligands may exist and 

contribute to MBd degradation, even though Cep55 is the sole MB ligand for the NBR1 

receptor identified thus far (Fig. 7d). In our model, Cep55 and NBR1 and perhaps other 

MBd ligands and autophagy receptors, act as switches that control MBd fate. Ongoing 

proteomic analyses may identify other molecules and pathways for MBd degradation.

MBd levels can be further increased in autophagy-compromised Atg5-/- MEFs when 

lysosome enzymes are inhibited (data not shown), suggesting that other degradative 

pathways may contribute to MBd degradation. Chaperone-mediated autophagy (CMA)15,61, 

which targets ~30% of cytosolic proteins and is upregulated upon compromised 

autophagy62, is a potential candidate since multiple MB proteins contain CMA-targeting 

motifs (KFERQ-like motifs)61. The proteasome system is another major cellular degradation 

pathway63 but it doesn’t appear to play a role in MBd degradation (supplementary 

information, Fig. S5).

Other non-degradative processes may also regulate MBd levels. Even though elevated 

proliferation rate has been proposed as a factor hindering autophagic MBd degradation and 

causing MBd-accumulation in cancer and normal cells12, we didn’t observe such a 

correlation (Fig. 4a). Additional work is required to determine if MBd-accumulation also 

requires selective sequestration of previously inherited (pre-existing) MBds, as suggested by 

selective accumulation of MBds in stem cells of the testes and lateral ventricle of the brain 

(Fig. 3a-d). Release of MBds has also been observed in chicken and mouse neural 

progenitors13,14 and in human cells (ref. 8 and Fig. 1g), and may be another, possibly minor 

pathway for eliminating MBds (or for intercellular signaling14). Finally, ongoing work is 

addressing whether MBds are distributed to both daughters of stem cells during symmetric 

divisions as might be expected if MBds are essential for stem cell function.
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In summary, our results demonstrate that MBds are more than the remnants of cytokinesis. 

Their fate is differentially controlled in different cell types and mediated by diverse 

pathways. The shared ability to accumulate MBds by stem cells and putative CSCs, and the 

striking impact on cellular phenotypes following manipulation of MBd levels suggest that 

MBds perform important cell type-specific functions that remain to be discovered.

METHODS

Cell lines

hESC and iPSC lines include H1 (WA01), H9 (WA09), H1-OGN (Oct4-EGFP knock-in 

H1)36, and dH1f-iPS34, which is reprogrammed from dH1f cells differentiated from H1-

OGN (HSCI at Children’s Hospital Boston). Differentiated lines include hRPE-1 (Clontech), 

MCF-10A, adult human fibroblasts (PCS-201-012, ATCC), hFib234, IMR90 (CCL-186, 

ATCC), ex vivo C57BL/6 MEFs, GFP-LC3-expressing Atg5-/- and Atg5+/+ MEFs19, and 

p62-/- and p62+/+ MEFs51. Cancer cell lines include DLD-1, HeLa, NCC-IT, PC-3, U2OS, 

SAOS-2, 134-4, MCF-7, MCF-10AT, and MCF-10CA1a. Mouse skeletal muscle 

progenitors (SMPs)33 and in vitro activated T cells were isolated and stimulated following 

standard protocols. Cells were used within 4 (primary cultures) or 10 (established cell lines, 

hESCs, and iPSCs) passages. Cells expressing MKLP1-GFP, monomeric RFP and CETN1-

GFP were created in the present study or ref. 28.

Immunofluorescence and Immunohistochemistry

Immunofluorescence was performed as described9,13,64. To label lysosomes and 

autophagosomes, cells were permeabilized with 0.05% saponin in blocking buffer (10% goat 

serum/PBS). Preparations for immunohistochemistry were fixed with 4% paraformaldehyde/

0.5% glutaraldehyde via perfusion. Testes were processed and stained following 2-4hr post-

fixation with 4% paraformaldehyde. MB-derived rings between spermatocyte syncytia65 

were observed if stained longer. Images were taken on a Zeiss Axioskop 2 microscope, a 

Zeiss Axiovert 200 microscope with PerkinElmer UltraView LAS spinning disc, or an 

Olympus BX-51 microscope. Images were processed and analyzed with MetaMorph 

(Molecular Devices) and Imaris (Bitplane Inc.).

Electron Microscopy

Conventional EM—Mouse tissue, fixed with 5% glutaraldehyde in 50 mM sodium 

cacodylate buffer (pH=7.4) for 30 min via perfusion, was diced into 1-mm cubes for 1-hr 

post-fixation at 4°C. Cubes were washed with cacodylate buffer, stained and embedded in 

Spi-pon/Araldite, and sectioned at 70-500 nm before staining with 25% uranyl acetate and 

Reynold’s lead citrate. Images were taken on a Philips CM12 electron microscope with an 

Erlangshen CCD Camera (Gatan).

Immunogold EM—MCF-7 cells on coverslips were prepermeabilized for 60 sec with 

preperm buffer (80 mM PIPES, pH6.8, 0.5 mM EGTA, 1 mM MgCl, 0.5% Triton X-100), 

fixed with 4% paraformaldehyde for 10 min, labeled for MKLP1 for 1 hour, processed as 

described66 using 12-nm gold-conjugated goat anti-rabbit IgG (Jackson ImmunoResearch) 

and embedded in Spi-pon/Araldite. 80-nm sections were cut, stained and viewed as above.
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Time-lapse imaging

CETN1-GFP-expressing lines were grown on 35-mm MatTek dishes (MatTek Corp.) or 

coverslips before imaging9. H9 hESCs were seeded on matrigel-coated dishes overnight, 

then transduced with CETN1-GFP, and grown for >72 hours in complete mTeSR1 medium 

(Stemcell Technologies). The transduced cells were imaged every 15 min in phenol red-free 

D-MEM/F12 medium (Invitrogen) with mTeSR1 supplement and 10 mM HEPES, and 

stained to confirm MBd inheritance. Duplicate dishes of transduced cells were stained for 

stem cell markers to ensure cell quality.

MBd quantification

Quantification was based on the markers that: 1) labeled both mitotic MBs and MBds 

(MKLP1, mgcRACGAP, or Cep55); 2) labeled MBs differently than MBds (α-tubulin or 

Aurora B); 3) defined cell boundaries (α-tubulin or ZO-1). Because Cep55, MKLP1, and 

mgcRACGAP also label centrioles and spindle midzones, cells were co-stained with 

centrosome antibody (e.g. 5051), and a size threshold for MB/MBds (1 μm) was introduced 

to exclude non-MBd structures. Structures with MB-specific or non-MB/MBd labeling were 

excluded from MBd counts. Cell counts: For hESCs, 5-11 colonies were imaged from 

triplicates in each experiment. For other cell types, random fields were imaged until n > 500 

cells. Each dividing cell was considered one cell.

Doubling time calculations

Cells were seeded (1-1.5×105/60-mm dish), and total cell counts were taken by 

hemocytometer every 24 hours for 4 days. Alternatively, cells were seeded (2.5-5.0×103/

well, 96-well plates), and the absorbance from an MTS-based colorimetric assay (#G3582; 

Promega Corp.) was used to estimate cell counts every 24 hours. Timepoints vs. Log10(avg. 

cell counts or absorbance at that timepoint) was plotted and the slope ascertained. T1/2 = 

Log10(2)/ slope. For some cell lines, both methods were used and gave similar results.

MBd localization assays

Extracellular trypsin treatment—MKLP1-GFP-expressing HeLa cells grown in 

MatTek dishes were imaged every 3 min, and underwent no morphological changes upon 

replacement of media with PBS. After trypsin addition, GFP+ MBds were monitored for 

60-90 min for intensity reduction (degradation) or detachment from cells (dissociation).

Co-culture assay—Equal numbers of monomeric RFP- or MKLP-GFP-expressing cells 

were seeded and co-cultured in 60-mm dishes with coverslips. Cells were stained 2 days 

later, and the percentage of GFP+ MBds associated with RFP+ cells was determined.

FPP assay—The FPP assay was carried out as reported42 except cells were plated in 

MatTek dishes 24 hours before co-transfection of MKLP1-GFP and GAPDH-dsRed 

(Lipofectamine 2000, Invitrogen). Cells were permeabilized and then digested with 

proteinase K (50 μg ml-1). Constructs labeling mitochondria, peroxisomes, ER and Golgi 

were used as controls.
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Lysosome and proteasome assays

Cells at 70% confluency were incubated with chloroquine (200 μM/PBS; Sigma), E64d + 

pepstatin A (E64d/PepA) (10 μg ml-1/DMSO each; Sigma)44,51 or solvents alone (controls) 

for 22 hours before fixation. Lysosome inhibition was confirmed and visualized after 12-

hour DQ-Red BSA (10 μl ml-1; Invitrogen) incubation. Mitotic hRPE-1 cells were treated 

with proteasome inhibitors, MG132 (1 μM; Sigma) or lactacystin (50 μM; Sigma) 1 hour 

after replating.

Autophagy manipulation assays

MBds were quantified in >500 cells in triplicate unless otherwise noted.

Protein depletion—siRNAs targeting human Atg767, p6212, NBR153 (2503-2521 bp, 

GenBank NM 005899), Lamin A/C9, and GFP (5’-NNCAUGAAGCAGCACGACUUC-3’) 

were Dharmacon. MBd levels were analyzed 48 hours after 1-nmol siRNA transfection 

(Oligofectamine, Invitrogen). For NBR1 and p62 experiments, only cells negative for p62 

and/or NBR1 immunofluorescence were analyzed.

Beclin1 (BECN1) overexpression—MBd levels were analyzed in 265 Flag+ and 2200 

control MCF-7 cells 48 hours after Flag-BECN1 (4 μg) or mock nucleofection (Amaxa).

LiCl + rapamycin treatment—MBd levels in HeLa cells were examined 24 hours after 

treatment with LiCl (10 mM; Sigma) and rapamycin (200 nM; Calbiochem), or with DMSO.

CEP55-EGFP overexpression—MBd levels and its NBR1-association were assessed in 

hRPE-1 cells (1×105/well, 6-well plates) 48 hours after CEP55-EGFP (1 μg), EGFP (1 μg) 

or mock transfection.

Biochemical assays

Protease and phosphatase inhibitors, cell lysates, SDS-PAGE and immunoblotting were 

purchased or carried out as described9 unless specified.

Autophagy flux determination—Lysates of E64d/PepA (I) and DMSO (U) treated cells 

were blotted for α-tubulin and LC3. LC3-II levels were determined and normalized to α-

tubulin using ImageJ. Autophagic flux = |100 – ((U/ I LC3-II level) × 100)|.

Immunoprecipitation—hRPE-1 cell lysates (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 2 

mM EDTA, 1 mM EGTA, 1% Triton X-100, 10% glycerol, 4°C) were pre-cleared for 1 

hour with protein G-plus conjugated agarose beads (Santa Cruz) at 4°C, incubated with 2 μg 

normal IgG, anti-Cep55 or anti-NBR1 antibodies for 3 hours at 4°C, and incubated 

overnight at 4°C with 25 μl protein G-plus beads. Following washes with lysis buffer and 

elution, immunoprecipitated proteins were analyzed by SDS-PAGE and immunoblotting.

Assays for MBd function

Cellular reprogramming—Viral production, transduction and reprogramming were 

performed as described34,35,55,68. Commercially-available shRNA against NBR1 (pSM2c-
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shNBR1, V2MM_36901; 4-22 bp, GenBank NM 005899) was cloned into pGIPZ lentiviral 

vector (Open Biosystems). Embryonic fibroblasts (IMR90), adult fibroblasts (hFib2) and 

dH1f cells were transduced with either NBR1-specfic or non-targeting shRNA vector, and 

puromycin-selected to establish NBR1-depleted (shNBR1) and control (shNT) lines. dH1f 

(2.5×104/assay) were reprogrammed with lentiviral vectors69 (Addgene #21162 and 21164) 

expressing OCT4, SOX2, KLF4 and c-MYC34,35,68 whereas the reprogramming of IMR90 

and hFib2 cells (5×104/assay) also included lentiviral vectors expressing Nanog and 

Lin2855,69 (Addgene #21163). iPSC colonies were quantified on day 21 based on Tra-1-60 

expression using ImageJ, as reported35,68, and with parameters: ≥148 (threshold), 0.5-1 

(circularity), and either 10-infinity or 30-infinity (size).

Side Population (SP) assay—The assays were carried out as previously described56 in 

MCF-7 cells. The MBd levels in SP and non-SP populations were determined as described 

above.

Soft-agar assays—“MBd high” and “MBd low” subpopulations of MKLP1-GFP-

expressing HeLa cells were separated by FACS, and plated in soft-agar (2.5 ×104/well, 6-

well plates). The MBd levels were determined 12-15 hours after plating aliquots of 

subpopulations onto coverslips. For the NBR1-silencing soft-agar assay, NBR1-depleted 

(shNBR1) and control (shNT) cells (1×105/100-mm dish) were plated. For both assays, cells 

were grown for ~3 weeks at 37°C, and stained as described70. Colonies were quantified 

microscopically, and the average from triplicate wells or plates presented.

Antibodies

Antibodies to the following proteins/tags were used in this study—Atg5 

(1:2000, Cosmo Bio, CAC-TMD-PH-ATG); Atg7 (1:1000, ProSci, 3617); Actin (1:300, 

Sigma, AC-40); Aurora B (1:100, BD Trans Lab, 611082); CD13 (1:50, BioLegend, 

301707); CD133 (1:200, eBioscience, 14-1331); Cep55 (1:50, 1:100 and 1:1000 for 

immunofluorescence, Abnova #H00055165-B01, Abnova #H00055165-A01, and the gift 

from K. Kurtche, respectively; 1:500 for immunoblotting, Genetax #GTX112190); 

hCenexin1 (1:100, a gift from K.S. Lee); Centriolin (1:200, ref. 9); Flag (1:200, Sigma, 

F7425); GAPDH (1:8000; Santa Cruz, SC-32233); GFP (1:1000; Abcam, ab6556 and Santa 

Cruz, sc-9996); GT335 (1:100; a gift from P. Denoulet); β1-Integrin (1:50; BD 

Phramingen); K15 (1:100; Lab Vision, MS-1068-P); LC3 (1:10 for immunofluorescence, 

Nano Tools, LC3-5F10; 1:300 for immunoblotting, Novus Bio NB100-2331); LAMP2 

(1:50, H4B4 from DSHB); mgcRACGAP (1:500, Abcam, ab2270); MKLP1 (1:1000 for 

immunofluorescence, 1:200 for immunohistochemistry, 1:10 for immuno-EM, Santa Cruz, 

sc-867); NBR1 (1:500, Abnova, H00004077-B01P); p62, human samples (1:500, BD Trans 

Lab, 610833); p62, mouse samples (1:1000, Progen, GP62-C); RFP (1:200, Clontech, 

632496); Na-K-ATPase (1:15, α6F from DSHB); α-tubulin (1:100 for immunofluorescence, 

1:400 for immunoblotting, Sigma, T9026a; 1:100 for immunofluorescence, Millipore, 

CBL270); α-tubulin-FITC (1:300, Sigma, F2168); Tra-1-60-biotin (1:200, eBioscience, 

13-8863); Ubiquitin (1:2000, BD BioSci, #550944); WGA-Alexa Fluor 555 (1:200, 

Molecular Probes, W32464); ZO-1-FITC (1:50, Zymed, 33-9111).
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Statistics

Data was analyzed by Student’s one-tailed paired t-test or unpaired with Welch’s correction 

unless specified. One-way ANOVA was used in conjunction with Tukey’s test for 

comparisons among multiple groups. For the EdU-labeling assay, the EdU intensity was first 

logarithmically transformed for the use of one-way ANOVA. Statistically analyzed 

experiments were completed at least 3 times.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
MBds accumulate within cells. (a, b) Multiple MBds associate with a PC3 cell (a) and a B-

lymphoblast (b). Insets (a) MBd labeling and (b) merged phase-contrast image with MBd 

labeling to show cell boundaries. MKLP1, MBd marker (a, b; red); CD44, membrane (a; 

green); DAPI, DNA (a; blue). Bar, 5 μm (a) and 2 μm (b). (c, d) Three-dimensional 

reconstruction of polarized cells in a monolayer (c) and a HeLa cell (d) show intracellular 

MBds. (c) ZO-1, tight junction; MKLP1, MBds. Bar, 2 μm. Enlargement (c, bottom) of box 

(c, top) shows five MBds (arrows). (d) Wheat germ agglutinin, plasma membrane (red); 

MKLP1-GFP, MBds (green); DAPI, DNA (blue). Bar, 5 μm. (e) Electron micrograph of a 

MBd in a permeabilized MCF-7 cell showing immungold labeling with MKLP1 antibodies. 

Inset, lower magnification of the MBd (boxed) in cell; nucleus, right. Bar, 200 nm. (f) Time-

lapse images during extracellular trypsin treatment of HeLa cells show retention of most 

MBds (MKLP1-GFP, red). Two MBds (yellow arrows) are lost upon treatment, suggesting 

digestion and/or dissociation. Time (hr:min) post-trypsin. Bar, 5 μm. (g) Two-day co-

cultures of HeLa cell expressing either MKLP1-GFP (MBd marker) or cytosolic RFP. Green 

MBds (arrows) associated with red cells (asterisk) indicate post-mitotic transfer of MBds 

between cells. Bar, 10 μm.
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Figure 2. 
MBds are preferentially inherited by the cell with the older centrosome. (a) CETN1-GFP 

signal is brighter in upper centrosome/spindle pole of a mitotic spindle. The merged DIC 

image with CETN1-GFP labeling at two centrosomes shows metaphase chromosome. Insets 

(lower left, upper right), enlargement and semi-quantitative integrated intensity profile of 

centrioles. Bar, 5 μm. (b) The brighter CETN1-GFP signal represents the older centrosome 

as it co-stains more intensely for hCenexin1 and remains more intense throughout cell 

division (supplementary information, Fig. S1a). Bar, 5 μm. Lower left, merge. (c, d) Time-

lapse images show that the mitotic MB is preferentially inherited by the daughter cell with 

the older centrosome in HeLa cells (c) and hESCs (d). Cells were imaged at the indicated 

times (hr:min) from telophase by phase-contrast microscopy (c) and from metaphase by DIC 

microscopy (d). Middle panel of (c) and left panel of (d), CETN1-GFP at centrosomes; 

enlargements and integrated intensity profiles show the daughter cell having the older 
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centrosome (c, upper; d, lower) inherits the MBd (Time-lapse images: 9:59 in c; lower right 

image in d). Mitotic MB and MBds (c, d; arrows). MKLP1, MBd marker (red); α-tubulin, 

mitotic MB and cell boundary marker (green); DAPI, DNA (blue). Bars, 10 μm (c, d).
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Figure 3. 
MBds accumulate in stem cells in vivo and in vitro. (a) Histological section through mouse 

seminiferous tubules labeled for MKLP1 shows several MKLP1+ puncta in cells of the basal 

layer where stem cells reside. Bar, 20 μm. Inset, enlargement of the cell (arrow) (b, c) 

Electron micrographs of mitotic MB (b, arrow) and multiple MB-like structures in 

interphase cells with similar shape and size in a juxtanuclear position (c, arrows) in basal 

cells of mouse seminiferous tubules. N, nucleus. Bars, 1 μm. (d) Representative planes of a 

neural progenitor cell in the ventricular zone (Sox2+, left-bottom panel) of an E13.5 mouse 

brain show that an intracellular MBd (asterisk) is associated with the ventricle-facing 

daughter in the asymmetrically dividing cell (top row). The bottom row emphasizes the 

position of paired chromosomes in a dividing anaphase cell. CD133, MB/MBd marker 
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(green); Na-K-ATPase, cell-border marker (red); DRAQ5, DNA (blue); DAPI, DNA. 

Ventricle (V). Bar, 5 μm. Note that abscission occurs apically in these cells. (e) A 

histological section through a hair follicle (left, phase-contrast microscopy) stained for the 

stem cell marker keratin 15 to identify the bulge region (dotted box), the stem cell niche. 

DNA stain (DAPI) and the phase-contrast image show full follicle architecture. (f) Upper 

panels show MBd-accumulating cells in the bulge region (boxed) colabeled with K15 and 

MKLP1. Enlargements (lower panels) of the boxed region highlight a cell with four MBds 

(asterisks). N, nucleus. Bar, 5 μm. (g-i) Quantitative analysis and representative images 

show a decrease in MBd-accumulating cells upon the differentiation of pluripotent stem cells 

(g, H1-OGN) to fibroblast-like cells (h, dH1f), and an increase in MBd-accumulating cells 

after reprogramming differentiated cells (h) to induced pluripotent stem cells (i, dH1f-iPS). 

(g-i) numbers refer to mean ± s.d., n=3. MKLP1, MBds; ZO-1, tight junctions; α-tubulin, 

microtubules; Aurora B, MBs. Bar, 10 μm.
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Figure 4. 
MBd-accumulation is high in stem cells and subpopulations of cancer cells and does not 

correlate with cell doubling time. (a) Percent of cells that accumulate MBds (>1) in a range 

of different cell types, as indicated. Below, doubling-times of representative cell lines 

aligned with MBd-accumulation data. Data are presented as mean ± s.d.; Cell lines are 

examined in triplicate (MCF-10A, DLD-1, MCF-10AT, MCF-7, H1, and H9), or 

quadruplicate (e.v. B6 MEFs, HeLa, SAOS-2, and MCF-10CA1a), except hRPE-1 (n=6), 

U2OS (n=7) and NCC-IT (n=8). Horizontal line, cell lines with different MBd-accumulation 

potential (14-fold) but similar doubling time. (b) Cells pulse-chased with EdU show a 

decrease in EdU intensity (x-axis) over time (y-axis), reflecting dilution of dye after cell 

divisions. (c, d) After a 96-hr chase period, EdU levels were compared between cells with 

MBd numbers of >1, 1, and 0 (y-axis) in HeLa (c) and SAOS-2 cells (d). In both cases, no 

significant differences were noted (c, p=0.2101; d, p=0.5609, one-way ANOVA, with at 

least 800 cells analyzed for each experiment, n=3), indicating similar cycling rates among 
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different subpopulations of cells. (b-d) Each graph is a representative experiment. Cells 

analyzed shown by green points, median depicted by vertical red lines, and horizontal red 

lines with ticks illustrate the interquartile range.
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Figure 5. 
MBds in stem and cancer cells evade membrane encapsulation and lysosomal degradation. 

(a) Depiction of fluorescence protease protection (FPP) assay. Digitonin selectively 

permeabilizes the plasma membrane but not internal membranes. Proteinase K degrades 

cytoplasmic components but membranous compartments remain intact. Under these 

conditions, MKLP1-GFP-labeled MBds (blue circle) in the cytoplasm will be degraded 

whereas those inside membrane-bound compartments (MBCs) will not. (b) MBds in MBd-

poor hRPE-1 cells are largely protected (~90% in membranous compartments, cells 

analyzed=10), whereas most MBds in HeLa cells are not (~27%, cells analyzed: 11), and are 

thus degraded in cytoplasm. Bar, 5 μm. (c) Graph depicting the presence of MBds in 
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lysosomes upon chloroquine or E64d/pepstatin A (E64d/PepA) inhibition in hRPE-1 and 

HeLa cells, but not in MCF-7 and H9 hESCs. Chloroquine treatment of H9 hESCs is not 

included as it caused differentiation and cell death. A representative image of hRPE-1 cells 

inhibited by chloroquine is shown depicting two MBds inside lysosomes. MKLP1 and 

LAMP2 are used as MBd (red) and lysosome (green) markers, respectively. DAPI, DNA 

(blue). n=100 MBds/treatment in each of the biological triplicates. Bar, 5 μm. (d) Graph 

showing the percent of MBd+ cells (MBd levels), the percent of MBds within lysosomes, 

and the percent of cells exiting cytokinesis following synchronization. MKLP1 and LAMP2 

are used as markers as in (c). Note that MBds are transferred into only one of the two 

nascent daughter cells after abscission (Fig. 2d), so a 50% maximum will be expected for 

MBd+ cells. The peak of MBds transferred to cells is 3 hours after plating followed by a 

peak of MBds entering lysosomes at 7 hours. (e) Both chloroquine and E64d/PepA 

treatments increase the percent of MBd+ cells in hRPE-1 cells and HeLa cells (chloroquine: 

p=0.0021 and p=0.0187, respectively; E64d/PepA: p=0.0022 and p=0.0043, respectively; 

n=3 for all experiments). In contrast, lysosomal inhibition has no detectable effect on hESCs 

(H1, H9) and MCF-7 cancer cells. Data are presented as mean ± s.d. (c-e), except mean ± 

s.e.m. in hESCs (e).
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Figure 6. 
Autophagy controls intracellular MBd levels. (a) Single-plane confocal images of MBds 

within LC3-positive autophagosomes in MEFs expressing GFP-LC3 (left) and in hRPE-1 

cells stained for endogenous LC3 (right). MBd markers: Cep55, MKLP1, or mgcRACGAP. 

Autophagosomes: GFP-LC3 or LC3. Note that MKLP1 (blue) and mgcRACGAP (red) are 

co-localized (magenta) in the autophagosome (green), suggesting that MBds are sorted into 

autophagosomes. Bars, 2 μm. (b) Decreasing autophagy levels by deletion of Atg5 gene 

(left, MEFs) or depletion of Atg7 by siRNA (right, HeLa) significantly increases the percent 

of MBd+ cells (p=0.0019 and p=0.021, respectively, n=3). Immunoblots confirm loss of the 

Atg5-Atg12 conjugation in mutant cells and depletion of Atg7 (asterisk). (c) Rapamycin 

(Rapa) and lithium chloride (LiCl) co-treatment induces autophagy and decreases the 
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percent of MBd+ cells (left, HeLa; p=0.0056, n=3). Immunoblots showing increased LC3-II 

levels confirm autophagy induction. Induction of autophagy by over-expression of Flag-

tagged BECN1 reduces the percent of MBd+ cells (right, MCF-7; p=0.0008, n=4) (d) 

Representative immunoblots showing high autophagy levels in normal cells and low levels 

in stem cells and cancer cells. Autophagic flux (autophagic activity) was measured by 

changes in the levels of LC3-II, in the presence or absence of lysosomal inhibitors E64d/

PepA. U, uninhibited. I, inhibited. Below, the average of the percent change in LC3-II levels 

after lysosomal inhibition from 3 experiments. α-tubulin, loading control. (e) Quantification 

of autophagic flux from 3 experiments in different cell lines. Normal dividing cells (MBd-

poor) typically have high autophagic flux, whereas stem and cancer cells (MBd-rich) have 

low autophagic flux. The data are presented as mean ± s.d. (b-e).
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Figure 7. 
NBR1 is a receptor for targeting MBds to the autophagy pathway. (a) Single-plane confocal 

images showing co-localization of the MBd and the autophagic receptor, NBR1, in U2OS 

cells and p62-deleted MEFs. MBd markers: MKLP1 or Cep55. Bar, 2 μm. (b) The percent of 

MBd+ cells is significantly increased following the depletion of NBR1 (p=0.022, n=3), but 

not another autophagic receptor, p62. Co-depletion of NBR1 and p62 does not further 

increase MBd levels over NBR1 depletion alone. (c) Deletion of the p62 gene does not affect 

the percent of MBd+ cells. For (b) and (c), immunoblots verify protein loss. (d) Co-

immunoprecipitation reveals Cep55 and NBR1 form a complex. Precipitated proteins and 

5% of the input material (Input) were analyzed by immunoblotting with antibodies against 

NBR1 or Cep55. (e-g) Over-expression of CEP55-EGFP increases the percent of MBd+ 

cells (e; p=0.0007, n=3) and the percent of NBR1-negative MBds (f; p=0.0568, n=3), 

presumably by sequestering NBR1 (red) away from MBds in cells expressing CEP55-EGFP 

(green) as shown in (g), and consequently preventing MBd degradation. The dotted box in 

(g) is enlarged (top right panel), and the labeling of NBR1 and CEP55-EGFP (middle and 

bottom right panel) are also presented. DAPI, DNA (blue). Bar, 5 μm. The data are 

presented as mean ± s.d. (b, c, e, and f).
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Figure 8. 
MBd enrichment increases reprogramming efficiency and enhances in vitro tumorigenicity. 

(a-c) Reprogramming is more efficient after MBd enrichment. Differentiated cells (dH1f) 

and embryonic fibroblasts (IMR90) are reprogrammed after stable expression of either 

NBR1-specific shRNA (shNBR1) or non-targeting shRNA (shNT). Emerging iPSC colonies 

are scored based on Tra-1-60 expression37. (a, b) Cells depleted of NBR1 to increase MBd 

levels show an increase in iPSC colony formation (a, dH1f: 3.1±0.5-fold, n=15, p=0.00035; 

IMR90: 3.4±0.8-fold, n=3, p=0.02; data are mean ± s.e.m.) but insignificant changes in 

autophagic activity (c) over shNT control. (b) Representative plates with Tra-1-60-

immunostained iPSC colonies. Immunoblot (c, top) and densitometry (c, bottom; percent of 

autophagic flux) show representative result (n=3); α-tubulin, loading control. (d) MCF-7 

side-population (SP) cells have a significantly higher percentage of MBd+ cells over the 

non-SP population (MP; p=0.0015, n=3; data are mean ± s.d.). (e, f) MBd enrichment in 

cancer cells leads to increased anchorage-independent growth. MKLP1-GFP-expressing 
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HeLa cells are separated into “MBd high” and “MBd low” subpopulations. An increase in 

the “MBd high” over “MBd low” ratio is associated with an increase in soft-agar colony 

formation (e). No significant difference was observed when the enrichment of MBd high 

subpopulation was less than 3-fold. More soft-agar colonies are formed when MBds are 

enriched by NBR1-depletion (shNBR1) in HeLa (f, left; p=0.0012, n=3) and mouse 134-4 

cells (f, right; p=0.0086, n=3); control, shNT. Data are mean ± s.d., and the colony number 

(e, f) is the sum of INT-violet-stained colonies from 10 random fields. (g) Model for MBd 

fate in cells. The newly-formed MBd is preferentially inherited by the daughter cell with the 

older centrosome (top panel). The inherited MBd (black ring) is recognized by binding of the 

NBR1 autophagic receptor (grey circle) with the MB protein Cep55 (magenta). The MBd is 

then encapsulated by the autophagosome (yellow circle), and degraded after fusion of 

autophagosome and lysosome (red circle) in differentiated cells. This pathway prevents 

MBd-accumulation. In contrast, stem cells efficiently accumulate MBds through successive 

divisions and evasion of NBR1-mediated autophagy. Additionally, differentiated and stem 

cells possess overall high and low autophagic activity, respectively.
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